
Journal of Sound and Vibration (2003) 259(1), 145–160
doi:10.1006/jsvi.2002.5132, available online at http://www.idealibrary.com on
CRACK DETECTION IN BEAM-TYPE STRUCTURES USING
FREQUENCY DATA

J.-T. Kim

Department of Ocean Engineering, Pukyong National University, Nam-Gu, Pusan 608-737,
Republic of Korea

AND

N. Stubbs

Department of Civil Engineering, Texas A&M University, College Station, TX 77843, U.S.A

(Received 1 May 2001, and in final form 31 January 2002)

A practical method to non-destructively locate and estimate size of a crack by using
changes in natural frequencies of a structure is presented. First, a crack detection algorithm
to locate and size cracks in beam-type structures using a few natural frequencies is outlined.
A crack location model and a crack size model are formulated by relating fractional
changes in modal energy to changes in natural frequencies due to damage such as cracks or
other geometrical changes. Next, the feasibility and practicality of the crack detection
scheme are evaluated for several damage scenarios by locating and sizing cracks in test
beams for which a few natural frequencies are available. By applying the approach to the
test beams, it is observed that crack can be confidently located with a relatively small
localization error. It is also observed that crack size can be estimated with a relatively small
size error.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

During the past two decades, a significant amount of research has been conducted in the
area of non-destructive damage evaluation (NDE) via changes in the dynamic modal
responses of a structure. The NDE methods developed up to date can be classified into
four levels [1]: (1) Level I Methods, i.e., those methods that only identify if damage has
occurred [2, 3]; (2) Level II Methods, i.e., those methods that identify if damage has
occurred and simultaneously determine the location of damage [4–6]; (3) Level III
Methods, i.e., those methods that identify if damage has occurred, determine the location
of damage as well as estimate the severity of damage [7–10]; and (4) Level IV Methods, i.e.,
those methods that identify if damage has occurred, determine the location of damage,
estimate the severity of damage, and evaluate the impact of the damage on the structure.
Despite these combined research efforts in Levels II and III methods, several problems
remain to be solved before damage assessment in real structures becomes a routine
activity. Among these problems, a need remains to develop practical theories of damage
detection to simultaneously predict the location of damage and estimate the geometric size
of damage (e.g., quantification of crack depths or corrosive zones) in structures. A need
also remains to circumvent the reality of being capable of measuring only limited modal
information.
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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The primary contribution this study aims to make is on the development of a
preliminary diagnostics via monitoring changes in natural frequencies of structures.
Natural frequency is one of the most common modal features that are used in crack
detection in structures. The appealing feature is that the natural frequency is relatively
simple to measure and apply for the further use to structures. Also, monitoring natural
frequencies is time and cost efficient in most structures. Research studies to non-
destructively detect crack location and magnitude via changes in natural frequencies have
been performed by many researchers. Attempts have been made to relate changes in
natural frequencies to changes in beam properties such as cracks, notches, or other
geometrical changes [11–13] and to identify crack location and magnitude in a beam from
vibration modes [4, 14–16]. The authors have worked on the topic in sensitivity approach
[7]. In the sensitivity approach, damage in a structural element is estimated from a direct
inverse solution of a change in the element stiffness if modal sensitivity is computed from
an analytical model of the structure and changes in natural frequencies are measured from
the structure. Even though the sensitivity approach can produce an estimation of location
and severity of damage at the same time, reliable output may not be expected unless both
the analytical model that should be accurate enough to compute the modal sensitivity and
a large number of frequencies that should be accurately measured are provided, noting
that even significant damage may cause very small changes in natural frequencies and
these changes may go undetected due to measurement or processing errors.

In order to improve those difficulties, the authors have adopted the presented
methodology in which crack localization is performed first using a crack location model
and crack size estimation at the predicted location is performed thereafter using a crack
size estimation model [11–13]. Also, the presented method uses only a few frequencies. The
crack location model relates frequency ratios of a few measured modes to modal sensitivity
ratio of the corresponding modes to identify potential crack locations [4, 17, 18]. For each
predicted location, the crack size estimation model relates fractional changes in measured
frequencies to a geometric crack size on the basis of the theory of the linear fracture
mechanics.

In this paper, we present a practical methodology to non-destructively localize cracks
and estimate the sizes of the cracks in beam-type structures using changes in frequencies.
First, we outline a crack detection algorithm to locate and size cracks in beam-type
structures using a few natural frequencies. A crack location model and a crack size
estimation model are formulated by relating fractional changes in modal energy to
changes in natural frequencies due to damage such as cracks or other geometrical changes.
Next, we demonstrate the feasibility and practicality of the crack detection scheme by
locating and sizing cracks in test beams. Finally, we assess the accuracy of the crack
detection results obtained from test beams for which natural frequencies were measured
for several damage scenarios [19].

2. CRACK DETECTION METHOD

The scheme shown in Figure 1 represents a crack detection method that yields
information on location and geometrical size of damage directly from changes in modal
characteristics of a target structure. The modal characteristics of interest here are natural
frequencies. Once, two sets of natural frequencies are experimentally measured for the as-
built structure and its corresponding damaged state, the crack detection methodology to
be described here is used to predict crack locations and to estimate geometrical sizes of
those predicted cracks. Note that system identification (SID) techniques can be adopted
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Figure 2. Geometry of free–free beam with a crack.
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to generate baseline modal parameters if there are no field records on the reference
structure [20].

2.1. CRACK-SIZE MODEL

With reference to Figure 2, suppose we are given an undisturbed (i.e., undamaged)
m-d.o.f. structural system that yields the ith natural frequency oi and the ith mode shape
fi: Next, assume that at some later time the structure is damaged (i.e., geometrical changes
due to the crack as shown in Figure 2) in one or more locations of the structure. The
resulting characteristic equation of the damaged structure yields the ith natural frequency
o�

i and the ith mode shape f�
i : (Note that the asterisk characterizes the damaged

structure.)
Assuming no volume changes due to cracks or other geometrical changes, Gudmunson

[11] proposed a first order perturbation method that predicts the changes in natural
frequencies of a structure resulting from the damage. For small cracks, the fractional
changes in modal strain energy can be related to the fractional changes in frequency as
follows:

dWi

Wi

¼ dli

li

; ð1Þ

where Wi is the ith modal strain energy of the initial structure, dWi is the loss in the ith
modal strain energy after damage, and dli=li is the fractional change in the ith eigenvalue
due to the damage.

In the present study, we limit our discussion on the crack-size model to Euler–Bernoulli
beams. If the Euler–Bernoulli beam theory is used, the ith modal strain energy Wi can be
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written as

Wi ¼
Z L

0

1
2 EIff00

i ðxÞg
2 dx; ð2Þ

where E is Young’s modulus, I is the second moment of area, L is the beam span length,
and fiðxÞ is the ith mode shape function. Next, the strain energy for the crack problem can
be computed from the energy release rate by implementing linear elastic fracture
mechanics. On assigning plane strain condition to the cracked beam, the energy loss rate
of the ith modal strain energy is given by [21]

@dWi

@a
¼ t

ð1� n2Þ
E

K2
I ; ð3Þ

where @dWi=@ai is the energy loss rate of the ith modal strain energy with respect to crack
depth, t is the beam thickness, n is the Poisson ratio, and KI is the stress intensity factor
depending on crack depth a; applied flexural stress level s; and beam dimension (e.g.,
thickness t; height H and length L as shown in Figure 1).

For the edge-crack case under bending motion (e.g., as shown in Figure 2), the stress
intensity factor is given by

KI ¼ F 	 s
ffiffiffiffiffiffi
pa

p
: ð4Þ

The term F is a geometrical factor depending on dimensionless crack depth ratio a=H

[22, 23], where

F ¼ 1	122� 1	40ða=HÞ þ 7	33ða=HÞ2 � 13	08ða=HÞ3 þ 14	0ða=HÞ4: ð5Þ
Substituting equations (4) and (5) into equation (3) and further integrating equation (3)
over the crack contour generates

dWi ¼
ptð1� n2Þ

2E
F2s2

ka2
k

� �
i

ð6Þ

in which, for the ith mode, ak ¼ aðxkÞ represents the crack size at location xk and sk ¼
sðxkÞ represents the maximum flexural stress at location xk along the beam’s longitudinal
axis. For the Euler–Bernoulli beam, the stress level is given by

sðxkÞ ¼ 1
2
E Hf00

i ðxkÞ: ð7Þ
On dividing equation (6) by equation (2), the fractional change in the ith modal strain

energy is given by

dWi

Wi

¼ ptð1� n2Þ
4

H2

I
F2Sika2

k ð8Þ

and

Sik ¼
Z

k

ff00
i g

2 dx=

Z L

0

ff00
i g

2 dx ð9Þ

in which Sik represents the sensitivity of the kth location in the ith modal strain energy.
On substituting equation (2)–(8) into equation (1), we obtain a relation between the

crack depth and the fractional changes in the ith eigenvalue as follows:

dli

li

¼ ZSik

ak

H

� �2

i
ð10Þ

and for the beam section considered here:

Z ¼ 0:25ptð1� n2ÞF 2H4I�1 ð11Þ
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in which ðak=HÞi is the dimensionless crack size at the kth location defined in the ith mode
and Z is a constant value depending on beam dimensions, crack types, and the Poisson
ratio. equation (10) can be solved to estimate crack sizes if the quantities dli=li and Sik are
experimentally determined or numerically generated.

2.2. CRACK-LOCATION MODEL

A crack-location model is formulated from linearly relating the structural system’s
sensitivity on modal characteristics to the eigenfrequency changes due to geometrical
changes as described in Figure 2. For an m-d.o.f. structural system of NE elements and N

nodes, the damage inflicted at predefined locations may be predicted using the following
sensitivity equation [7]:

XNE

j¼1

Fijaj ¼ Zi ð12Þ

in which aj ð�1 � aj � 0Þ is the damage inflicted at the jth location (i.e., the fractional
reduction in jth stiffness parameter). The term Zi is the fractional change in the ith
eigenvalue and (by neglecting changes in mass due to damage) is given by

Zi ¼ do2
i =o

2
i ; ð13Þ

where do2
i ð¼ o�2

i � o2
i Þ is the change in the ith damped natural frequency before and after

damage. The term Fij is the modal sensitivity of the ith modal stiffness with respect to the
jth element.

Fij ¼ Kij=Ki; ð14Þ

where Ki is the ith modal stiffness (Ki ¼ FT
i CFi) and Kij is the contribution of the jth

element to the ith modal stiffness (Kij ¼ FT
i CjFi). Also, Fi is the ith modal vector, C is the

system stiffness matrix, and Cj is the contribution of jth element to the system stiffness.
Once the quantity Zi is experimentally determined, equation (12) can be solved to locate

and size damage in the system. However, the inverse solution is possible only if the number
of damage parameters is close to the number of modes (i.e., NE  NM) [20]. In the case
when NEcNM; the system becomes ill-conditioned and alternate methods to estimate
damage parameters should be sought. In an effort to overcome this difficulty, Stubbs et al.
[17] proposed a sensitivity ratio concept based on earlier works presented by Cawley and
Adams [4].

Let us consider the structural system of NE elements ( j ¼ 1; 2; . . . ; q; . . . ;NE) and a
measured set of NM vibration modes (i ¼ 1; . . . ;m; n; . . . ;NM). Equation (12) is rewritten
for any two modes m and n (m=n) respectively. On dividing equation (12) for mode m by
the other for mode n; we obtain

Zm

Zn

¼
PNE

j¼1 FmjajPNE
j¼1 Fnjaj

¼ Fm1a1 þ Fm2a2 þ 	 	 	 þ Fmqaq þ 	 	 	 þ FmNEaNE

Fn1a1 þ Fn2a2 þ 	 	 	 þ Fnqaq þ 	 	 	 þ FnNEaNE

: ð15Þ

Assuming that the structure is damaged in a single element, such that aj=0 when j ¼ q but
aj ¼ 0 when j=q; equation (15) is rewritten by

Zm

Zn

¼ Fmq

Fnq

ð16Þ

in which Zm=Zn is the measured ratio of the fractional changes in frequency for two
modes, m and n: Also, Fmq=Fnq is the ratio of the theoretically measured sensitivities for
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those modes and the element q: So the damage inflicted at that location is defined using
equation (16) when the LHS equals to the RHS.

For all measured NM modes, equation (16) can be extended into

ZmPNM
k¼1 Zk

¼ FmqPNM
k¼1 Fkq

: ð17Þ

Since equation (17) is true only if element q is damaged, we introduce an error index into
equation (17) as follows:

eij ¼
ZmPNM
k¼1 Zk

� FmqPNM
k¼1 Fkq

; ð18Þ

where eij represents localization error for the ith mode and the jth location, and eij ¼ 0
indicates that the damage is located at jth location using the ith modal information. To
account for all available modes we form a single damage indicator (DI) for the jth member
as

DIj ¼
XNM

i¼1

e2ij

" #�1=2

; ð19Þ

where 04DIj51 and the damage is located at element j if DIj approaches the local
maximum point. In principle, the proposed method works if at least two modes are given.
But it is important to notice that the accuracy of damage identification is up to either the
number of modes or the type of modes that are used in the process.

3. EXPERIMENTAL VERIFICATION

3.1. DESCRIPTION OF TEST STRUCTURE

The crack detection model will be validated using a comprehensive data provided by
Silva and Gomes [19]. Those researchers performed an extensive set of modal analysis
experiments on free–free uniform beams with the goal of providing objective data to
validate proposed techniques for damage detection. Test specimens were steel beams with
0.032m� 0.016m rectangular cross-section and 0.72m long. The corresponding material
properties were: E ¼ 206 GPa; u ¼ 0	29; and r ¼ 7650 kg=m3:

Here the results of 32 experiments reported by Silva and Gomes [19] are utilized: 16
experiments on undamaged beams and corresponding 16 experiments on damaged beams.
The following procedures were utilized for the experiments. The first four bending
frequencies were measured for each of 16 undamaged free–free beams. Then a cut was
introduced into each beam and the same four bending frequencies were measured. The
crack in each beam was simulated by a cut normal to the beams’ longitudinal axis, with a
controlled depth (as listed in Table 1). The thickness of the cut was carefully defined taking
into account that both sides of the crack were not supposed to make contact during the
dynamic bending of the beam.

Table 1 presents the total 16 damage scenarios that include four different crack-
locations and four crack-depth levels at each location. The two sets of bending frequencies
measured before and after the damage episodes are listed in Table 1.



Table 1

Damage scenarios and resonance frequencies (Hz) of free–free beams [19]

Crack Inflicted crack Mode 1 Mode 2 Mode 3 Mode 4
case

Location
ðx=LÞ

Size
ða=HÞ

Initial Cracked Initial Cracked Initial Cracked Initial Cracked

1 0.125 0.125 315.9 316.0 860.2 859.4 1654.5 1649.0 2668.0 2653.0
2 0.125 0.25 316.3 316.1 862.6 857.8 1659.0 1632.5 2674.0 2608.0
3 0.125 0.375 317.6 316.6 864.6 851.4 1663.0 1593.5 2682.0 2520.0
4 0.125 0.5 314.7 313.0 856.8 826.6 1647.0 1515.0 2657.0 2378.0
5 0.25 0.125 316.8 315.9 861.6 855.2 1657.5 1647.5 2673.0 2665.0
6 0.25 0.25 317.7 314.1 864.4 840.6 1662.0 1626.5 2676.0 2666.0
7 0.25 0.375 317.8 308.8 864.8 805.2 1662.5 1580.5 2675.0 2660.0
8 0.25 0.5 323.8 305.4 878.8 870.4 1689.5 1534.0 2721.0 2685.0
9 0.375 0.125 313.5 311.7 855.0 853.8 1646.0 1646.5 2657.0 2652.0

10 0.375 0.25 315.4 307.1 858.6 842.4 1653.0 1651.5 2665.0 2604.0
11 0.375 0.375 316.6 296.2 862.4 825.0 1659.5 1655.5 2675.0 2532.0
12 0.375 0.5 328.8 279.0 873.4 805.2 1679.5 1672.0 2707.0 2439.0
13 0.5 0.125 316.7 313.0 862.8 863.2 1658.0 1645.5 2675.0 2676.0
14 0.5 0.25 315.6 303.0 859.4 859.8 1652.0 1606.5 2667.0 2665.0
15 0.5 0.375 317.8 291.5 865.8 866.0 1664.5 1574.0 2687.0 2683.0
16 0.5 0.5 320.6 265.1 873.0 873.2 1678.0 1498.0 2701.0 2701.0

Table 2

Comparison of frequency: undamaged beams versus baseline model

Mode no. Average frequency
of 16 uncracked beams

Frequency from
modal analysis

Coefficient
of variation

1 317.85 318.07 0.010
2 864.01 863.02 0.008
3 1661.59 1657.96 0.008
4 2678.75 2675.75 0.006
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3.2. CRACK DETECTION PRACTICE

The Euler–Bernoulli beam model was selected as the mathematical representation for
crack detection practice. For analysis purposes we divided the 72 cm beam into 72
elements of equal size. Each element is a potential damage location and has a spacing of
1 cm or 1.38 per cent (i.e., 1

72
� 100) of the beam span. Crack detection practice on the

model was performed in five steps.
In the first step, theoretical modal analysis was performed and a system identification

technique proposed by Kim and Stubbs [10] was used to identify baseline modal
parameters of the beam. The average frequencies of the 16 undamaged beams and the
generated frequencies of an identified baseline model are compared as listed in Table 2.
Note that the coefficients of variation (COVs) are less than 0.01 for all modes.

In the second step, the modal sensitivity (i.e., the equivalent expression of equation (14))
of mode i and element j between two locations ðxj ; xjþ1Þ was computed using

Fij ¼
Z xjþ1

xj

EIff00
i ðxÞg

2dx

Ki

; Ki ¼
Z l

0

EIff00
i ðxÞg

2 dx: ð20Þ
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The flexural rigidity EI is assumed constant over the beam span. The curvatures of the
mode shapes were generated at the 73 nodes of the DDM. The curvatures were obtained as
follows: (1) modal amplitudes corresponding to nodes 1–73 were generated from
theoretical modal analysis; (2) a modal displacement function wðxÞ was generated for
the entire beam using a third order interpolation function; and (3) the curvatures (i.e.,
f00ðxÞ) were determined at the 73 nodes. Since four measured frequencies are available, the
sensitivities are defined for four modes and 72 elements. Figure 3 shows the modal
sensitivities of the test beam that were computed along the beam’s longitudinal axis.

In the third step, we predicted potential crack locations. We computed the fractional
changes in frequencies (i.e., equation (15)) using the measured frequency results listed in
Table 1. By assuming that EI is constant over the beam span, the sensitivity ratio (i.e., the
RHS of equation (17)) for an element q and for any two modes m and n can be rewritten
by

Fmq

Fnq

¼
R

q
ff00

mg
2 dxR

q
ff00

ng
2 dx

R l

0ff
00
nðxÞg

2 dxR l

0ff
00
mðxÞg

2 dx
: ð21Þ

Next, we computed localization errors using equation (18) for four modes and 72 locations
(i.e., e1j; e2j; e3j; and e4j; j ¼ 1; 72) by implementing the sensitivity ratios and the fractional
changes in frequencies. For example, error indices are plotted in Figures 4–7 for the
following four cases: Crack Case 2 (a=h ¼ 0	125 and x=L ¼ 0	25), Crack Case 6
(a=h ¼ 0	125 and x=L ¼ 0	25), Crack Case 10 (a=h ¼ 0	125 and x=L ¼ 0	375), and Crack
Case 14 (a=h ¼ 0	125 and x=L ¼ 0	5). Note for each case along the x co-ordinate that each
point where error equals to zero indicates that a crack is located at that location. Finally,
we computed the damage index (i.e., given by equation (19)) to decide potential crack
locations. Damage indices are plotted in Figures 8–11 for Crack Cases 2, 6, 10, and 14
respectively. Note for each crack case that because of symmetry two predictions are made
thus one location is false-alarmed. The crack localization results for all the 16 damage
cases are summarized in Table 3.

In the fourth step, crack size at each predicted location was estimated by using the crack
size model (i.e., the equivalent expression of equation (10)). Assuming a crack is located in
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element j between two locations ðxj ;xjþ1Þ; a solution of crack size is given by

ak

H

� �
i
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
dli

ZSikli

s
; ð22Þ

where ðak=HÞi is the dimensionless crack size estimated at location xkð¼ ðxj þ xjþ1Þ=2Þ by
using the ith modal data. As stated previously, the vertical crack-depth of opening fracture
mode is our primary attention. The modal sensitivity of mode i and location k was
computed using equation (20). The constant Z was obtained from equation (11) by
implementing H ¼ 0	032 m; L ¼ 0	72 m; the Poisson ratio of 0.29, and the geometrical
factor F ¼ 1	12 (i.e., an approximate value of equation (5) for a small edge-crack). The
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fractional changes in the eigenvalues were computed from equation (15) by implementing
the measured frequencies listed in Table 1. The crack sizing results for the 16 damage cases
are summarized in Table 2.

3.3. Assessment of crack detection results

From the analysis it is observed that at least three modes are needed to detect damage
existing anywhere in the beam. Individual modes have relatively different sensitivities to
potential damage locations in the beam (as shown in Figure 3). For example, modes 1 and
3 are sensitive to the locations near the center while modes 2 and 4 are not sensitive (i.e.,
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zero sensitivity at the center). Therefore, if damage presents near the center, a good
prediction can be expected if the two modes modes 1 and 3 are used or if a series of modes
including modes 1 or 3 are used. In this study, Figures 4–11 illustrate that the accuracy of
crack localization can be improved as more modes are used in the process since
localization errors are decreased by averaging results of individual modes.

The accuracy of the crack localization scheme presented here is evaluated by measuring
the so-called localization error. The localization error le; which represents the metrical
difference between real crack location and predicted location, is quantified using the
expression

le ¼ ðDx=LÞ � 100 ð23Þ
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in which le is the spacing between the inflicted and predicted location and L is the reference
span. A comparison between the inflicted and predicted locations of crack is plotted in
Figure 12. The location error was computed by equation (23) and the results are
summarized in Table 3. The minimum location error is 0.1 per cent. It means that the
predicted location falls within less than 0.1 cm of the correct location in the test beam (note
that L ¼ 72 cm). The maximum location error is 4.8 per cent (damage case 16) and it
means 3.4 cm away from the correct location in the test beam. The average location error
is 1.3 per cent. By excluding Damage Case 16 that exceeds two standard deviations,
localization errors range in 0.1–2.1 per cent.

The accuracy of the crack sizing scheme presented here is evaluated by measuring the
so-called size error. The size error se, which represents the difference between real and



Table 3

Crack prediction and accuracy assessment results of test beams

Crack case Inflicted crack(s) Predicted crack(s) Prediction accuracy

Location ðx=LÞ Size ða=HÞ Location ðx=LÞ Size ða=HÞ Loc. error % Sizing error (%)

1 0.125 0.125 0.110 0.126 1.5 1.1
2 0.125 0.25 0.121 0.234 0.4 6.0
3 0.125 0.375 0.140 0.335 1.5 10.4
4 0.125 0.5 0.146 0.440 2.1 11.8
5 0.25 0.125 0.243 0.131 0.7 5.1
6 0.25 0.25 0.257 0.244 0.7 2.2
7 0.25 0.375 0.264 0.395 1.4 5.5
8 0.25 0.5 0.256 0.434 0.6 13.1
9 0.375 0.125 0.326 0.093 4.8 25.4

10 0.375 0.25 0.376 0.226 0.1 9.3
11 0.375 0.375 0.378 0.345 0.3 7.9
12 0.375 0.5 0.390 0.439 1.5 12.1
13 0.5 0.125 0.511 0.132 1.1 6.0
14 0.5 0.25 0.514 0.232 1.4 6.8
15 0.5 0.375 0.486 0.328 1.4 12.4
16 0.5 0.5 0.511 0.488 1.1 2.3
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Figure 12. Comparison of inflicted crack location and predicted crack location.
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predicted crack depth, is quantified using the expression

se ¼ jfða=HÞr � ða=HÞpg=ða=HÞrj ð24Þ

in which ða=HÞr is the inflicted real crack-depth and ða=HÞp is the predicted crack-depth.
The size error was evaluated using equation (24). A comparison between the inflicted and
predicted crack sizes is plotted in Figure 13 and the results are also summarized in Table 3.
The size errors range in 1.1–24.4 per cent. For example, per cent error means 0.1mm
difference in the estimation of 10-mm crack depth. The average size-error is 8.6 per cent.
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Figure 13. Comparison of inflicted crack depth and predicted crack depth.
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By excluding Damage Case 16 that exceeds two standard deviations, size errors range in
1.1–13.1 per cent.

In theory, the presented method may detect any crack sizes that cause changes in beam’s
stiffness and result in changes in natural frequencies. However, in reality, even a big crack
might be remained undetected due to measurement and modelling uncertainties. For
example, the effect of inconsistent measuring temperatures may cancel monitoring changes
in natural frequencies in real structures. In this study, we use a set of deterministic test
results reported by Silva and Gomez [19]. It is reported that the beams were tested under a
controlled laboratory environment. Due to the same reasons, the effect of measurement
errors on the accuracy of crack detection has not been examined here; however, the
discussion on the problem should be expanded to quantify the effect of uncertainties due
to measurement errors and environmental conditions on the accuracy of crack detection
in beam structures. Previous studies on the topic by the authors are available as
references [17, 10].

4. SUMMARY AND CONCLUSIONS

This paper presented a methodology to non-destructively locate and estimate size of
crack in structures for which only a few natural frequencies are available. The proposed
methodology was presented in two parts. The first part of the paper outlined a theory of
crack detection that yielded information on the location and size of crack directly from
changes in frequencies of the structures. A crack location model and a crack size
estimation model were formulated by relating fractional changes in modal energy to
changes in natural frequencies. The second part of the paper demonstrated the feasibility
and practicality of the crack detection scheme by accurately locating and sizing cracks in
test beams for which four natural frequencies were available for several damage scenarios.

By applying the approach to the test beam, it was observed that the crack can be
confidently located with a relatively small localization error. It is also observed that the
size of crack can be estimated with a relatively small size error. We conclude that it is
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possible to localize a crack and estimate the crack size in a beam-type structure with
knowledge of natural frequencies of only a few natural frequencies measured before and
after damage.

Research to improve the crack detection algorithm presented is continuing along four
lines of inquires. First, we are developing algorithms to more accurately detect the location
and estimate the size of damage. Second, we need to assess the effect of uncertainties due
to measurement errors and environmental conditions on the accuracy of the crack
detection approach for beam structures. Third, we need to demonstrate the applicability of
the method to several types of multiple cracks. The application of the method is not
limited for detecting multiple cracks in beams, even though the presented method was
derived assuming a beam damaged in a single location. However, the accuracy of detection
may be lower than when applied for the single-crack cases. Fourth, we are now in
advanced stages of demonstrating the effectiveness and practicality of the approach for
laboratory-scale models and full-scale structures.
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